

IMPROVEMENT energy management system for multi-energy microgrids

March 7, 2023, Seville, Spain

Romain Mannini Julien Eynard Stéphane Grieu

Consejería de la Presidencia, Administración Pública e Interior

) Introduction

I/ LNEG thermal microgrid modelling

II/ Users' thermal comfort management

III/ Thermal resources management

IV/ Energy management in case of MG islanding

) Conclusion and perspectives

 evaluate the islanding ability of the multi-energy microgrid

PID/rule-based (PID/RB) EMS

• SC control:

Components

heat pump

Objectives

solar collectors (SC)

hot water tank (HWT)

manage thermal energy

thermal energy storage (TES)

- HP control:
- FCU control:

MPC-based (/) EMS

- Optimization-free MPC for the HP:
- Optimization-free MPC for the FCUs:
- Optimization-based MPC for the HP:
- Optimization-based MPC for the FCUs:

- fan coil units (FCUs)
- 4 rooms
- PV panels
- bank of batteries
 - loads

LNEG thermal microgrid: MPC control

Considerations

- MPC allows a reference trajectory to be followed
- An MPC controller determines from future states of the system the best control inputs along the prediction horizon
- An MPC controller applies to the system the best control inputs for the current states based on predictions
- MPC is useful in case of uncertainties (PV power generation intermittency, energy price fluctuations...)

Research question

→ will EMS provide better results than PID-RB EMS regarding thermal energy management and thermal comfort constraints satisfaction in grid-connected mode and islanded mode?

Solar collectors model, proposed by Buzás et al. [1] (to benefit from a simple model; complex models impact significantly computation time) Heat balance of a solar collector:

[1] Buzás, J., I. Farkas, A. Biró, and R. Németh. 1998. 'Modelling and Simulation Aspects of a Solar Hot Water System'. Mathematics and Computers in Simulation 48 (1): 33-46. https://doi.org/10.1016/S0378-4754(98)00153-0.

Tc.out

SC and HWT temperatures

<u>Stratified tank model, adapted from Rahman *et al.* [2] and Nash *et al.* [3] Heat balance for one layer inside the tank (12 layers):</u>

with

with and

Heat balance for one layer inside the coil of the heat exchanger (5 layers):

with

[2] Rahman, Aowabin, Amanda Smith, and Nelson Fumo. 2016. 'Performance Modeling and Parametric Study of a Stratified Water Thermal Storage Tank'. *Applied Thermal Engineering* 100. <u>https://doi.org/10.1016/j.applthermaleng.2016.01.163</u>.
 [3] A. L. Nash, A. Badithela, and N. Jain, 'Dynamic modeling of a sensible thermal energy storage tank with an immersed coil heat exchanger under three operation modes', *Applied*

Energy, vol. 195, pp. 877–889, Jun. 2017, doi: 10.1016/j.apenergy.2017.03.092.

<u>FCU model</u> (Peter *et al.* [4]) Heat balance for the tube-side (co-current) of the FCU:

Heat balance for the shell-side (co-current) of the FCU:

<u>RC thermal model of room z</u> (Darure *et al.* [5], Stamp *et al.* [6], Garnier *et al.* [7]) Heat balance of room z:

The LNEG building

with

[4] Peter, Woolf. 2020. 'Book: Chemical Process Dynamics and Controls (Woolf)'. Engineering LibreTexts. 19 May 2020.

https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Book%3A_Chemical_Process_Dynamics_and_Controls_(Woolf).

[5] Darure, Tejaswinee. 2017. 'Contribution to Energy Optimization for Large-Scale Buildings: An Integrated Approach of Diagnosis and Economic Control with Moving Horizon'. Phdthesis, Université de Lorraine. https://tel.archives-ouvertes.fr/tel-01647139.

[6] S. Stamp, H. Altamirano-Medina, and R. Lowe, 'Measuring and accounting for solar gains in steady state whole building heat loss measurements', *Energy and Buildings*, vol. 153, pp. 168–178, Oct. 2017, doi: 10.1016/j.enbuild.2017.06.063.

[7] A. Garnier, J. Eynard, M. Caussanel, and S. Grieu, 'Low computational cost technique for predictive management of thermal comfort in non-residential buildings', *Journal of Process Control*, vol. 24, no. 6, pp. 750–762, Jun. 2014.

R2 thermal zone model validation, from February 19 to February 22

Observation

 The error between the model and the data is below 2.2°C for both the TES and the thermal zones

TES model validation, from May 11 to May 12

II/ Users' thermal comfort management1) Optimization-free MPC-based EMS (EMS)

Objectives

- reduce energy consumption
- satisfy thermal comfort constraints (20°C 22°C)

Strategies

- turn on the FCU before an occupation period at the optimal time
- turn off the FCU before the end of the occupation period at the optimal time

Optimization-free method

- check for the next time steps to turn on or turn off the FCU according to the next occupancy or non-occupancy period
- select which time step is the optimal one to turn on or turn off the FCU

Air temperature () in the room 4 with different tests

II/ Users' thermal comfort management2) Optimization-based MPC-based EMS (EMS)

Objectives

- reduce energy consumption
- satisfy thermal comfort constraints

Optimization problem

with the optimal time step to turn on or turn off the FCU of room

for thermal comfort, air temperature in the room has to be between 20°C and 22°C:

if or then FCUs Rooms

LNEG thermal microgrid: MPC control

- (kWh)
 : minimal temperature to respect (°C)
 : actual time step

 ort in the room
 : maximal temperature to respect (°C)
 : prediction step

 : optimal time step to turn off/on the FCU in the room
 : index of the room
- : energy supplied to the room by the FCU (kWh)
- : penalty for not respecting thermal comfort in the room
- : coefficients
- : objective function in the room

II/ Users' thermal comfort management3) Comparison between PID/RB EMS and MPC-based EMS

Observations (3 winter days created in simulation from real data)

- PID/RB EMS let FCU of room on during the 3 days
- EMS anticipates optimal instants to turn on or to turn off the FCU of room

II/ Users' thermal comfort management3) Comparison between PID/RB EMS and MPC-based EMS

		Heat supplied (kWh)					
Season	EMS	R1/R2	R3	R4			
	PID/RB	1.3	1.5	7.6			
Spring		0.6	1.2	3.2			
		0.6	1.2	3.6			
	PID/RB	2.2	2.2	15.6			
Winter		1.5	1.3	11.4			
		1.5	1.3	11.4			

		Computation time (s)					
Season	EMS	R1/R2	R3	R4			
	PID/RB	36	81	22			
Spring		2891	2827	3072			
		7344	7952	5330			
	PID/RB	34	47	23			
Winter		5185	2754	2848			
		11330	15751	9047			

		Constraint deviation (°C/h)						
Season	EMS	R1/R2	R3	R4				
	PID/RB	0.05	0.01	0.20				
Spring		0	0	0				
		0	0	0				
	PID/RB	0.20	0.05	0.66				
Winter		0	0	0				
		0	0	0				

Results (for 3-day simulation)

- EMS and EMS satisfy comfort constraints
- FCU energy consumption and time of use are both reduced with EMS
- EMS and EMS have the same energy efficiency
- **EMS** has a lower computation time than **EMS**
- \rightarrow advantage to EMS

III/ Thermal resources management1) Optimization-free MPC-based EMS (EMS)

Objectives

- reduce the economical cost
- interaction between the electrical microgrid and the thermal microgrid via the photovoltaic power generation surplus

Strategies

- turn on the heat pump when electricity prices and when emissions are low
- turn on the heat pump in case of a photovoltaic power generation surplus coming from the electrical microgrid

LNEG thermal microgrid: MPC control

III/ Thermal resources management1) Optimization-free MPC-based EMS (EMS)

Algorithm process considering PV power generation surplus:

III/ Thermal resources management 2) Optimization-based MPC-based EMS (EMS)

Objectives

- reduce economical cost
- reduce the carbon footprint
- maintain water temperature in the TES above 38°C

Optimization problem

Normalized electricity purchase tariff and carbon dioxide emissions:

- : normalized electricity purchase tariff (c€/kWh)
- : normalized emission from the main grid production ()
- : normalized electricity purchase tariff and emissions

LNEG thermal microgrid: MPC control

: soft constraint on TES water temperature

III/ Thermal resources management2) Optimization-based MPC-based EMS (EMS)

Take advantage of the PV power generation surplus to turn on the heat pump:

Maintain the water temperature in the layer of the TES above 38°C during occupancy periods:

if °C during occupancy period, then

Data collected from the LNEG electrical microgrid

- : power consumption (kW) : PV power generation (kW)
- : wind turbine power generation (kW)
- : PV power generation surplus (kW)
- : heat pump power consumption (kW)
- : temperature of the TES at layer

III/ Thermal resources management3) Comparison between PID/RB EMS and MPC-based EMS

Observations (3 winter days created in simulation from real data)

- PID-RB EMS turns on the heat pump when α is high
- EMS and EMS turn on the heat pump when α is low

III/ Thermal resources management3) Comparison between PID/RB EMS and MPC-based EMS

,,	Electricity bill (€)		emissions (kgCO2)				Total co	nstraint			
(kW)	EMS	Winter	Spring	(k\\/)	FMS	Winter	Spring	, ,		αενιατιο	n (°C/h)
	PID/RB	26.36	13.41			WITTET	Shing	(kW)	EMS	Winter	Spring
Without		14.08	0.42	Without	PID/RB	55.8	25.9		PID/RB	1.43	0.19
PV surplus		13.54	0.31	PV surplus		35.6	0.9	Without		1.15	0.15
		21.01	7.52			32.3	0.7	PV surplus		0	0
With PV	PID/RB	21.91	7.53		PID/RB	46.5	14.4			0	0
surplus		12.34	0.42	With PV		31.7	0.9		PID/RB	1.41	0.06
		11.18	0.35	surplus		27.0	0.7	With PV	•		0
						۲۱.۵	0.7	surplus		U	0
		Computati	on time (s)							0	0
(kW)	EMS	Winter	Spring	Results (for 3-day simulation)							
	PID/RB	126	179	• t	he quantity	of electricity	/ bought and	the emissio	ns decrease	with EMS a	and
Without PV surplus		2824	1950	 EMS compared to PID/RB EMS EMS is better than EMS the constraint of 38°C is always satisfied with EMS and EMS 							
		182238	154918								
	PID/RB	157	176	 the computation time is lower with EMS compared to EMS EMS is a better solution for implementation 							
With PV surplus		2566	2669				n inpicifici				

IV/ Energy management in case of MG islanding 1) Configurations and scenarios

Scenarios (4-day simulation)

- 1. MG islanding from 6 PM on day 1 until the end of day 4
- 2. MG islanding from 1 PM on day 1 until 1 PM on day 3
- 3. MG islanding from 8 AM on day 1 until 8 AM on day 2

Configurations

- 4. , , batteries 2.69 kW/10 kWh
- 5. , , batteries 2.69 kW/10 kWh
- 6. , , batteries 2.69 kW/10 kWh
- 7. , , batteries 5 kW/15 kWh

Thermal comfort constraints (R1, R2, R3 and R4)

- 8. 21°C
- 9. 19°C

TES constraints (layer)

- 10. 38°C
- 11. 36°C

Objectives

- reduce economical cost
- reduce the carbon footprint
- maintain water temperature in the TES above 38°C
- satisfy thermal comfort constraints

Comparative study EMS

PID/RB EMS

Islanding evaluation criteria

IV/ Energy management in case of MG islanding 2) Electrical microgrid islanding results

 $-P_p - P_c - P_f^{fb} = I - \alpha$

Observations (4-day simulation in winter)

- islanding is always satisfied, regardless of the configuration or the scenario .
- small bank of batteries \rightarrow PV power generation surplus increases ٠

IV/ Energy management in case of MG islanding3) Multi-energy microgrid islanding results

EMS stores heat at better instants than PID/RB EMS, has lower heat consumption and takes advantage of its ability to anticipate the TES constraints related to islanding

IV/ Energy management in case of MG islanding3) Multi-energy microgrid islanding results

Observations for thermal resource management

- **EMS** is better when it comes to satisfy the TES constraints and heat the water stored in the TES using cheap and green electricity
- **EMS** isn't able to correctly manage successive occupancy periods during islanding (only the first one is well managed) for scenario 2, with and
- for scenario 2, with and , EMS anticipates the rooms heating using the heat pump → the rooms are heated before solar collectors can heat the water in the TES; this is not the case with PID/RB EMS

		C_H							
		$T_r = 21,$	$T_{e,4} = 38$	$T_r = 21,$	$T_{e,4} = 36$	$T_r = 19,$	$T_{e,4} = 38$	$T_r = 19,$	$T_{e,4} = 36$
Is	. Cf.	MPCopt	PID/RB	MPCopt	PID/RB	MPCopt	PID/RB	MPCopt	PID/RB
	1	671	7671	1020	9470	25	48	2	8
1	2	706	8295	1125	9739	34	137	0	0
1	3	559	7964	997	9585	73	74	5	18
	4	561	7970	999	9601	75	77	2	21
	1	1411	6188	1353	8150	168	48	9	8
9	2	1492	6795	1550	8447	395	125	0	0
2	3	1488	6414	1414	8258	256	103	21	61
	4	1329	6414	1414	8258	256	103	21	61
	1	1212	3819	1370	5865	95	158	4	47
9	2	1515	4219	1588	6238	211	239	0	0
3	3	1297	3965	1449	5967	140	241	15	63
	4	1287	4048	1442	5960	161	226	14	61

IV/ Energy management in case of MG islanding3) Multi-energy microgrid islanding results

Observations for combined thermal resource and thermal comfort management

- thermal comfort constraints are always satisfied with EMS whereas they are not with PID/RB EMS
- EMS is always better than PID/RB EMS regarding thermal resource and thermal comfort management

 \rightarrow **EMS** is a better solution for implementation

		C_T							
		$T_r = 21,$	$T_{e,4} = 38$	$T_r = 21,$	$T_{e,4} = 36$	$T_r = 19,$	$T_{e,4} = 38$	$T_r = 19,$	$T_{e,4} = 36$
Is.	Cf.	MPCopt	PID/RB	MPCopt	PID/RB	MPCopt	PID/RB	MPCopt	PID/RB
	1	671	8457	1020	10360	25	495	2	513
	2	706	9080	1125	10628	34	583	0	505
1	3	559	8749	997	10474	73	521	5	523
	4	561	8756	999	10491	75	524	2	526
	1	1411	6973	1353	9039	168	495	9	513
0	2	1492	7579	1550	9337	395	571	0	505
2	3	1488	7200	1414	9147	256	550	21	566
	4	1329	7200	1414	9147	256	550	21	566
	1	1212	4605	1370	6755	95	605	4	553
9	2	1515	5004	1588	7128	211	686	0	505
3	3	1297	4750	1449	6856	140	688	15	568
	4	1287	4834	1442	6849	161	673	14	566

Conclusion and perspectives

Multi-energy microgrid management results

	PID-RB EMS	EMS	EMS
Thermal comfort constraints	Not always satisfied	Always satisfied	Always satisfied
Energy consumption	-	Reduced	Reduced
Economical cost	-	Reduced	Reduced
emissions	-	Reduced	Reduced
Thermal constraints	Not always satisfied	Always satisfied	Always satisfied
PV power generation surplus	All surplus used	All surplus used	All surplus used
TES constraints during islanding	Rarely satisfied	Satisfied in a better way most of the time	-
Thermal comfort constraints during islanding	Not always satisfied	Always satisfied	-
Computation time	Low	High	Very high
Implementation	Easy	Moderate	Hard

Conclusion and perspectives

Research question

 \rightarrow will EMS provide better results than PID-RB EMS regarding thermal energy management and thermal comfort constraints satisfaction in gridconnected mode and islanded mode?

Developments

- multi-energy (thermal-electrical) microgrid model
- PID/rule-based (PID-RB) EMS, EMS and EMS tested in grid-connected mode and islanded mode

Conclusion

- all EMSs are able to take advantage of the PV power generation surplus
- **EMS** provides better results than PID/RB EMS in gridconnected mode
- EMS provides better results than PID/RB EMS for thermal comfort and thermal energy (except for scenario 2) management in islanded mode

 \rightarrow : best solution for in-situ implementation as it has low computation time and overall good performance

Perspectives

- enhance
- enhance EMS in islanded mode

THANK YOU! www.improvement-sudoe.eu www.promes.cnrs.fr

[1] Buzás, J., I. Farkas, A. Biró, and R. Németh. 1998. 'Modelling and Simulation Aspects of a Solar Hot Water System Mathematics and Computers in Simulation 48 (1): 33–46 https://doi.org/10.1016/S0378-4754(98)00153-0.

[2] Rahman, Aowabin, Amanda Smith, and Nelson, Fumo. 2016. 'Performance Modeling and Parametric Study of a Stranfied Water Thermal Storage Tank'. Applied Thermal Engineering 100. https://doi.org/10.1016/j.applthermaleng.2016.01.163.

[3] A. L. Nash, A. Badithela, and N. Jain, 'Dynamic modeling of a sensible thermal energy storage tank with an immersed coil heat exchanger under three operation modes', *Applied Energy*, vol. 195, pp. 877–889, Jun. 2017, doi: 10.1016/j.apenergy.2017.03.092.

[4] Peter, Woolf. 2020. 'Book: Chemical Process Dynamics and Controls (Woolf)'. Engineering LibreTexts. 19 May 2020. https://eng.libretexts.org/Bookshelves/Industrial and Systems Engineering/Book%3A Chemical Process Dynamics and Controls (Woolf).

[5] Darure, Tejaswinee. 2017. 'Contribution to Energy Optimization for Large-Scale Buildings: An Integrated Approach of Diagnosis and Economic Control with Vioving Horizon'. Phdthesis, Université de Lorraine. https://tel.archives-ouvertes.fr/tel-01647139.

[6] S. Stamp, H. Altamirano-Medina, and R. Lowe, 'Measuring and accounting for solar gains in steady state whole building heat loss measurements', *Energy and Suildings*, vol. 153, pp. 168–178, Oct. 2017, doi: 10.1016/j.enbuild.2017.06.063.

[7] A. Garnier, J. Eynard, M. Caussanel, and S. Grieu, 'Low computational cost technique for predictive management of thermal comfort in non-residential buildings', Journal of Process Control, vol. 24, no. 6, pp. 750–762, Jun. 2014.

