

IECON 2022 48th Annual Conference of the IEEE Industrial Electronics Society October 17-20 ,2022 | Brussels

Use of Resonant Terms in a 2DOF Control Scheme for the Current Control of an **Active Power Filter**

Fco. Javier López Alcolea¹, Emilio J. Molina-Martínez¹, Javier Vázquez¹, Pedro Roncero-Sánchez¹, Alfonso Parreño Torres², Ismael Payo³

¹ Institute of Energy Research and Industrial Applications, UCLM ² School of Industrial Engineering of Albacete, UCLM ³ Institute of Industrial and Aerospace Engineering, UCLM

TÉCNICO

2

IECON 2022 48th Annual Conference of the IEEE Industrial Electronics Society October 17-20,2022 | Brussels

Index

- 1. Introduction
- 2. System Description
- 3. Design of the Control Stage

November of the

UCLM

- 4. Design Example
- 5. Simulation Results
- 6. Conclusions

Consejeria de la Priniderata, Administración Pública e Interior Conservería de Matteriola y Piranti existe Fac

de Andalucia

100 1 000

1. Introduction

- Number of non-linear and single-phase loads has increased
- Current harmonics
- Voltage and current disbalances
- Power quality issues
- Reduction of the power transferred in the grid
- EMC issues
- Shunt Active Power Filter (APF)
- Current disturbances: e.g., Current harmonics and disbalances
- Reactive Power

1. Introduction

- Operation of the APF: 3 different Stages
- Extraction of the undesired current components
- Control of the APF
- PWM modulation
- Objective: Control stage of an APF with an LCL filter placed at its output
- Control scheme based on a 2-Degrees-of-Freedom (2DOF) structure
- Damping of the LCL filter
- Independent control of each phase of the APF
 - $\circ~$ Can be also applied to single-phase systems
 - $\circ~$ Use of a Synchronous Reference Frame (SRF) for control purposes is avoided

2. System Description

2. System Description

2. System Description

- LCL Filter Model
 - Single-phase model of the LCL filter
 - Neglecting magnetizing inductance of the transformer

• 2DOF Controller

$$R_d(z) = R_\omega(z) \cdot R_p(z)$$

$$R_\omega(z) = \frac{R_{\omega,n}(z)}{R_{\omega,d}(z)} = \frac{z-1}{z^2 + c_0 z + 1}$$

$$c_0 = -2\cos(2\pi f_0 T_s)$$

$$R_p(z) = \frac{R_{p,n}(z)}{R_{p,d}(z)} = \frac{K_1 z - K_0}{z^3 + \rho_2 z^2 + \rho_1 z + \rho_0}$$

$$R_f(z) = \frac{R_{p,n}(z)}{R_{p,d}(z)} = \frac{K_5 z^3 - K_4 z^2 + K_3 z + K_2}{z^3 + \rho_2 z^2 + \rho_1 z + \rho_0}$$

• 2DOF Controller

$$H(z) = \frac{N(z)}{F(z)}$$

$$F(z) = P_d(z)R_{\omega,n}(z)R_{p,n}(z) +$$

$$+ P_n(z)[R_{p,n}(z)R_{\omega,n}(z) + R_{2,n}(z)R_{\omega,d}(z)]$$

$$F(z) = (z - p_9) \dots (z - p_0)$$
System of linear equations

$$R_h(z) = \frac{1}{z^2 + c_h z + 1} \cdot k_h \frac{z - \beta_h}{z - \alpha_h}$$

$$c_h = -2\cos(2\pi h f_0 T_s)$$

Particular solution:

 $\alpha_h = 0$

LCL Filter

Parameter	Value	Parameter	Value
$L_f(mH)$	2.6	R_{Lf} (m Ω)	80
$C_f(\mu F)$	46	$R_{Cf}(m\Omega)$	50
$L_{d1}(mH)$	0.155	R_{Ld1} (m Ω)	200
L_{d2} (mH)	0.274	R_{Ld1} (m Ω)	300
r	$\sqrt{3}$	$T_s (\mu s)$	100

Location of the Poles

Pole	Location	Pole	Location
p_0	0.966	p_5	0
p_1	0.966	p_6	0
p_2	-0.2826	p_7	0
p_3	0.483	p_8	0
p_4	0.483		

LCL Filter

Parameter	Value	Parameter	Value
$L_f(mH)$	2.6	R_{Lf} (m Ω)	80
$C_f(\mu F)$	46	$R_{Cf}(m\Omega)$	50
$L_{d1}(mH)$	0.155	$R_{Ld1}(m\Omega)$	200
L_{d2} (mH)	0.274	R_{Ld1} (m Ω)	300
r	$\sqrt{3}$	$T_s(\mu s)$	100

Control Parameters

Param.	Value	Param.	Value
C ₀	-1.9990	$ ho_0$	0.1597
$ ho_1$	0.9207	$ ho_2$	1.4122
<i>K</i> ₀	-3.2085	<i>K</i> ₁	3.9929
<i>K</i> ₂	-3.2085	<i>K</i> ₃	31.4209
K_4	-19.8707	<i>K</i> ₅	4.1270

Control Parameters

			COMPANIES I
h	c _h	k _h	$\boldsymbol{\beta}_h$
3	-1.9911	0.280	0.800
5	-1.9754	0.260	0.850
7	-1.9518	0.255	0.930
9	-1.9206	0.230	0.975

5. Simulation results

- Hardware-In-the-Loop (HIL) Emulation
 - Typhoon HIL 402 & dSPACE MicroLabBox
- Three Loads
 - Load A
 - \circ $\,$ Positive, negative and zero sequence components
 - $\circ~$ 5 A, 4 A and 2 A RMS, respectively
 - Load B
 - $\circ~$ Inductive load: L = 20 mH, R = 62 Ω
 - Load C

h	Amplitude	\hat{l}_{h}/\hat{l}_{1} (%)	h	Amplitude	$\hat{I}_h / \hat{I}_1 (\%)$
1	20	-	7	1.44	7.2
3	4.32	21.6	9	0.76	3.8
5	2.14	10.7			

5. Simulation results

5. Simulation results

6. Conclusions

- Current control for a three-phase four-wire APF with an LCL filter
- Damping of the LCL filter
- Can be also applied to single-phase systems
- Control scheme based on a 2D0F structure
- 2DOF controller for tracking the 50 Hz signal
- Resonant regulators for tracking harmonic components
- Simulation results
- Fast tracking of the 50 Hz signal (2D0F controller)
- Proper tracking and compensation of the current harmonics

6. Conclusions

• Future work: Experimental results

6. Conclusions

• Future work: Experimental results

IECON 2022 48th Annual Conference of the **IEEE Industrial Electronics Society** October 17-20 ,2022 | Brussels

Thank you for your attention!

This work was supported by the European Regional Development Fund (ERDF) under the program Interreg SUDOE SOE3/P3/E0901 (Project: IMPROVEMENT).

UCLM

Consejería de la Presidencia, Administración Pública e Interior Consejería de Hacienda y Financiación Europe:

